Next Web: web 3.0, web semántica y el futuro de internet > Machine learning

    sortFiltrar Ordenar
    7 resultados

    Vídeo

    /

    Publicado el 21.3.2019 por Equipo GNOSS

    Transformación digital e Inteligencia Artificial, por Carme Artigas (RETINA LTD)

    Carme Artigas,  Fundadora y CEO de Synergic Partners (Telefónica), explica su visión acerca de la transformación digital y el papel que juega en ella la inteligencia artificial.  Para Carme, el valor de negocio de los datos (big data)  llega en tres ámbitos: genera nuevas fuentes de ingresos a raíz de la personalización, reduce el fraude y riesgo y es más eficiente en términos operativos, ayuda a tomar mejores decisiones.

    La entrevista se desarrolló en RETINA LTD, el evento de EL PAÍS Retina que reunió a los líderes de la transformación digital en el Museo Reina Sofía de Madrid el 28 de noviembre de 2017.

    ...

    Página Web

    /

    Publicado el 2.1.2019 por Equipo GNOSS

    Inteligencia Artificial: distinguiendo la moda de la realidad - Datanami

    Se trata de un interesante artículo de Alex Woodie, Editor in Chief de Datanami, en el que se pone en cuestión los límites y naturaleza de la actual moda (hype) de la Inteligencia Artificial.

    Por una parte, tenemos increibles avances en machine learning, gracias a las redes neuronales que usan GPUs (Graphics Processing Unit) muy rápidas y que están entrenadas con grandes cantidades de datos. Esta forma de IA ha impulsado enormemente los sistemas de visión artificial y de reconocimiento del habla, a menudo por encima de la capacidad de los humanos.

    Por otra, estamos lejos de comenzar a ver los tipos de automatización que muchos esperan de la IA. A pesar de que se empujan las fronteras de lo que es posible hacer con estas máquinas y algoritmos, ya hemos llegado a algunos límites de lo que estas tecnologías pueden conseguir.

    Los vehículos autónomos son una prueba evidente. A pesar de los enormes progresos, hay casos, como el padecido por la empresa DarwinAI, que exponen los problemas de estos sistemas en el mundo real al salirse de los casos previstos. El sistema de DarwinAI decidía desviarse a la izquierda sin razón aparente, hasta que descubrieron que se debía a una mala interpretación del color del cielo.

    Otro ejemplo curioso es el experimento llevado a cabo por investigadores de Carnegie Mellon, que fueron capaces de confundir tanto a un sistema de reconocimiento facial como para que identificara a uno de ellos como la actriz Milla Jovovich, a pesar de ser claramente un hombre (el estudiante de doctorado Mahmood Sharif), por el simple método de usar una montura de gafas diseñada para provocar el error.

    Esto, que podría parecer una anécdota, expone unos problemas de seguridad preocupantes, además de diluir los límites en lo que podríamos llegar a percibir como real o irreal.

    Es decir, las aplicaciones de IA actuales basadas en machine learning funcionan muy bien o excepcionalmente bien en ámbitos muy "estrechos", pero bastante peor cuando intentan pasar de un ámbito a otro o simplemente ejecutarse en el poco previsible mundo real. Eso sí, hay un consenso en que aún no hemos llegado a la cúspide de lo que se podría conseguir con las tecnologías actuales de IA, que el autor llama "estadística con esteroides" y otros han denominado como "estadística glorificada" (John Alexis Guerra).

    Hace unos 70 años que la inteligencia artificial forma parte del imaginario tecnológico colectivo. Desde entonces, ha tenido periodos innovadores prometedores con otros en los que las innovaciones parecían estancarse. Algunos investigadores de IA han llamado a estos periodos veranos e inviernos de la inteligencia artificial. Parecemos estar en un verano muy soleado, ¿cuándo dejará el calor actual paso a la realidad?

    ...

    Página Web

    /

    Publicado el 2.1.2019 por Equipo GNOSS

    La siguiente Inteligencia Artificial - DARPA - AI Next Campaign

    Durante más de 5 décadas, DARPA (Defense Advanced Research Projects Agency) ha liderado la investigación y desarrollo que ha posibilitado el avance y aplicación de tecnologías de Inteligencia Artificial basadas en reglas y aprendizaje estadístico. Propone ahora el desarrollo y aplicación de una "tercera ola" de tecnologías de inteligencia artificial, con el programa "AI Next", en el que invertirá 2.000 millones de dólares.

    Las áreas claves del programa serán la automatización de procesos de negocio críticos del Departamento de Defensa de los Estados Unidos de América; mejora de la robustez y fiabilidad de los sistemas de IA; mejoras en la seguridad y resistencia de las tecnologías de machine learning; reducción del consumo energético y de las ineficiencias de rendimiento; y ser pioneros en la siguiente generación de algoritmos y aplicaciones de inteligencia artificial, como la "explicabilidad" y el razonamiento de sentido común.

    Las áreas específicas de la campaña AI Next son: 

    • Nuevas capacidades. Automatizar procesos críticos de negocio, como la acreditación de nuevos sistemas de software.
    • IA Robusta. Analizar los fallos de las tecnologías de IA, actualmente poco comprendidos, para obtener un rendimiento fiable.
    • IA Adversarial. Mejorar la robustez de los sistemas. Si bien es la herramienta más potente de la IA actual, machine learning se ha demostrado como fácilmente engañable con pequeños cambios en los inputs que nunca confundirían a un humano (ver Inteligencia Artificial: distinguiendo la moda de la realidad). Los datos usados para entrenar al sistema podrían ser incorrectos y hacer que el sistema fuese vulnerable a un ciberataque.
    • IA de alto rendimiento. Mejorar el rendimiento conteniendo y/o reduciendo el gasto energético, mediante el rediseño de algoritmos y hardware.
    • IA de siguiente generación. Añadir a los sistemas la capacidad de explicar sus resultados y dotarlos de razonamiento con conocimiento de sentido común.

     

    ...

    Página Web

    /

    Publicado el 21.11.2018 por Equipo GNOSS

    Streams, el asistente de Inteligencia Artificial para enfermeras y médicos de DeepMind, es absorbido por Google

    Los algoritmos de Google comenzarán a trabajar con datos sanitarios procedentes del Reino Unido de la mano de la empresa de Inteligencia Artificial DeepMind. Google ha absorbido la sección DeepMind Health y su aplicación de IA, Streams desarrollada para ayudar al Servicio Nacional de Salud (NHS) del Reino Unido,

    Streams, “reúne información médica importante, como los resultados de los análisis de sangre de los pacientes, en un solo lugar, lo que permite a los médicos de nuestros hospitales asociados detectar problemas graves mientras están en movimiento”.  Desde DeepMind señalan que espera que la IA ayude en los próximos años a transformar el progreso de la medicina y especialmente el diagnóstico, mejorándolo “potencialmente”, así como “el descubrimiento de fármacos y mucho más”.

    Una noticia muy polémica dado el malestar en el Reino Unido causado por uno de los primeros acuerdos de DeepMind con el NHS. En 2017 se dictaminó que esta asociación entre DeepMind y NHS era ilegal, por haberse recopilado datos médicos de 1,6 millones de pacientes sin informarles.

    DeepMind Health ha producido más aplicaciones inmediatas y prácticas que otras partes de la compañía, lo que probablemente lo convirtió en un objetivo tentador para el nuevo CEO de Google Health, David Feinberg. El nuevo mandato de Feinberg es reestructurar todas las apuestas dispares de Google en materia de salud, desde el hardware hasta los algoritmos.

     

    Información vía: https://www.theverge.com/https://www.bbc.com/news/technology-46206677

     

    ...

    Pdf

    /

    Publicado el 1.10.2018 por Equipo GNOSS

    Artificial Intelligence and Life in 2030. Stanford University

    "Artificial Intelligence and Life in 2030" One Hundred Year Study on Artificial Intelligence: Report of the 2015-2016 Study Panel, Stanford University, Stanford, CA,  September 2016. Doc: http://ai100.stanford.edu/2016-report. Accessed:  September 6, 2016.

    Executive Summary. Artificial Intelligence (AI) is a science and a set of computational technologies that are inspired by—but typically operate quite differently from—the ways people use their nervous systems and bodies to sense, learn, reason, and take action. While the rate of progress in AI has been patchy and unpredictable, there have been significant advances since the field's inception sixty years ago. Once a mostly academic area of study, twenty-first century AI enables a constellation of mainstream technologies that are having a substantial impact on everyday lives. Computer vision and AI planning, for example, drive the video games that are now a bigger entertainment industry than Hollywood. Deep learning, a form of machine learning based on layered representations of variables referred to as neural networks, has made speech-understanding practical on our phones and in our kitchens, and its algorithms can be applied widely to an array of applications that rely on pattern recognition. Natural Language Processing (NLP) and knowledge representation and reasoning have enabled a machine to beat the Jeopardy champion and are bringing new power to Web searches.

    While impressive, these technologies are highly tailored to particular tasks. Each application typically requires years of specialized research and careful, unique construction. In similarly targeted applications, substantial increases in the future uses of AI technologies, including more self-driving cars, healthcare diagnostics and targeted treatments, and physical assistance for elder care can be expected. AI and robotics will also be applied across the globe in industries struggling to attract younger workers, such as agriculture, food processing, fulfillment centers, and factories. They will facilitate delivery of online purchases through flying drones, self-driving trucks, or robots that can get up the stairs to the front door.

    This report is the first in a series to be issued at regular intervals as a part of the One Hundred Year Study on Artificial Intelligence (AI100). Starting from a charge given by the AI100 Standing Committee to consider the likely influences of AI in a typical North American city by the year 2030, the 2015 Study Panel, comprising experts in AI and other relevant areas focused their attention on eight domains they considered most salient: transportation; service robots; healthcare; education; low-resource communities; public safety and security; employment and workplace; and entertainment. In each of these domains, the report both reflects on progress in the past fifteen years and anticipates developments in the coming fifteen years. Though drawing from a common source of research, each domain reflects different AI influences and challenges, such as the difficulty of creating safe and reliable hardware (transportation and service robots), the difficulty of smoothly interacting with human experts (healthcare and education), the challenge of gaining public trust (low-resource communities and public safety and security), the challenge of overcoming fears of marginalizing humans (employment and workplace), and the social and societal risk of diminishing interpersonal interactions (entertainment). The report begins with a reflection on what constitutes Artificial Intelligence, and concludes with recommendations concerning AI-related policy. These recommendations include accruing technical expertise about AI in government and devoting more resources—and removing impediments—to research on the fairness, security, privacy, and societal impacts of AI systems.

    Contrary to the more fantastic predictions for AI in the popular press, the Study Panel found no cause for concern that AI is an imminent threat to humankind. No machines with self-sustaining long-term goals and intent have been developed, nor are they likely to be developed in the near future. Instead, increasingly useful applications of AI, with potentially profound positive impacts on our society and economy are likely to emerge between now and 2030, the period this report considers. At the same time, many of these developments will spur disruptions in how human labor is augmented or replaced by AI, creating new challenges for the economy and society more broadly. Application design and policy decisions made in the near term are likely to have long-lasting influences on the nature and directions of such developments, making it important for AI researchers, developers, social scientists, and policymakers to balance the imperative to innovate with mechanisms to ensure that AI's economic and social benefits are broadly shared across society. If society approaches these technologies primarily with fear and suspicion, missteps that slow AI's development or drive it underground will result, impeding important work on ensuring the safety and reliability of AI technologies. On the other hand, if society approaches AI with a more open mind, the technologies emerging from the field could profoundly transform society for the better in the coming decades.

    Study Panel: 

    Peter Stone, Chair, University of Texas at Austin
    Rodney Brooks, Rethink Robotics
    Erik Brynjolfsson, Massachussets Institute of Technology
    Ryan Calo, University of Washington
    Oren Etzioni, Allen Institute for AI
    Greg Hager, Johns Hopkins University
    Julia Hirschberg, Columbia University
    Shivaram Kalyanakrishnan, Indian Institute of Technology Bombay
    Ece Kamar, Microsoft Research
    Sarit Kraus, Bar Ilan University
    Kevin Leyton-Brown, University of British Columbia
    David Parkes, Harvard University
    William Press, University of Texas at Austin
    AnnaLee (Anno) Saxenian, University of California, Berkeley
    Julie Shah, Massachussets Institute of Technology
    Milind Tambe, University of Southern California
    Astro Teller, X

     

     

    ...

    Vídeo

    /

    Publicado el 1.10.2018 por Equipo GNOSS

    Don't fear intelligent machines. Work with them (Garry Kasparov. TED)

    Debemos enfrentar nuestros temores si queremos aprovechar al máximo la tecnología, y debemos vencer esos temores si queremos sacar lo mejor de la humanidad, dice Garry Kasparov. Uno de los mejores jugadores de ajedrez de la historia, Kasparov perdió un partido memorable con la supercomputadora IBM Deep Blue en 1997. Ahora comparte su visión de un futuro donde las máquinas inteligentes nos ayudan a convertir nuestros sueños más grandiosos en realidad.

    Kasparov señala en esta charla TED  que "la inteligencia artificial avanza tan rápido, que de hecho no es el futuro, sino el presente que ya vivimos. [...] Como alguien que se enfrentó con máquinas, puedo decirles que estas son excelentes noticias. Eventualmente, cada profesión tendrá que sentir esta presión, o bien significará que la humanidad ha dejado de hacer progresos. No podemos elegir cuándo o dónde se detiene el progreso tecnológico, no podemos retrasarlo. De hecho, tenemos que acelerarlo”.
     

    ...

    Categorías:

    Página Web

    /

    Publicado el 26.9.2018 por Equipo GNOSS

    WatsomApp: Inteligencia artificial para mejorar la convivencia en las aulas

    La empresa española KIO–AI ha desarrollado una herramienta tecnológica, basada en la inteligencia artificial Watson de IBM, para identificar y prevenir casos de acoso escolar. El programa, bautizado como WatsomApp, combina juegos on line y conversaciones con robots humanoides (QBO y Snow) para detectar conflictos en las aulas e identificar a alumnos que pueden estar siendo hostigados y a los posibles acosadores, así como a los líderes y a aquellos que están más aislados y pueden ser más vulnerables.

    ...