Recursos > intelligence

    sortFiltrar Ordenar
    5 resultados

    Página Web


    Publicado el 21.2.2019 por Equipo GNOSS

    Gartner sitúa Graph Analytics entre las cinco primeras tendencias tecnológicas en 2019

    La consultora Gartner ha aprovechado la celebración de la cumbre Gartner Data & Analytics, celebrada en Sydney en febrero, para identificar las principales tendencias tecnológicas de datos y análisis que contarán con un gran potencial entre los próximos tres a cinco años, marcando las futuras líneas de investigación y desarrollo en este ámbito.  

    Dentro de este ránking de tendencias encontramos en la cuarta posición la Inteligencia Artificial Explicable, implementada cada vez más para aumentar y remplazar la toma de decisiones humanas. La Inteligencia Artificial Explicable en la ciencia de datos y las plataformas de aprendizaje automático (ML), por ejemplo, sería capaz de generar automáticamente una explicación de los modelos en términos de precisión, atributos y estadísticas en lenguaje natural.

    En la quinta posición se sitúa Graph Analytics, conjunto de técnicas analíticas que permite la exploración de relaciones entre entidades de interés, tales como organizaciones, personas y transacciones.

    La aplicación del procesamiento de gráficos y los DBMS de gráficos crecerá al 100% anual hasta 2022 para acelerar continuamente la preparación de datos y permitir una ciencia de datos más compleja y adaptable. 

    En su intervención, Rita Sallam, vicepresidente de investigación de Gartner, ha dejado patente el potencial impacto que los líderes de datos y análisis pueden tener en el negocio de estas tendencias, adaptando en consecuencia a ello modelos de negocio y operaciones.

    Asimismo, Gartner recomienda que los líderes de datos y análisis hablen con los líderes empresariales sobre sus prioridades comerciales y exploren cómo estas tendencias pueden posibilitar nuevas posibilidades de negocio.


    ‘TOP 10’ de Tendencias Tecnológicas:

    N ° 1: Análisis Aumentado

    Nº 2: Gestión de datos aumentados

    Nº 3: Inteligencia continua

    Nº 4: Inteligencia Artificial Explicable

    Nº 5: Graph Analytics                                                   

    Nº 6: Red de datos

    Nº 7: Procesamiento de Lenguaje Natural (NLP) / Análisis Conversacional

    Nº 8: Aprendizaje automático (ML) e Inteligencia Artificial  con soluciones comerciales

    Nº 9: Blockchain

    Nº 10: Servidores de memoria persistentes


    Las próximas cumbres Gartner Data & Analytics 2019 se llevarán a cabo del 4 al 6 de marzo en Londres , del 18 al 21 de marzo en Orlando , del 29 al 30 de mayo en Sao Paulo , del 10 al 11 de junio en Mumbai , del 11 al 12 de septiembre en la Ciudad de México y del 19 al 19 de octubre. 20 en Frankfurt. 




    Publicado el 1.10.2018 por Equipo GNOSS

    Artificial Intelligence and Life in 2030. Stanford University

    "Artificial Intelligence and Life in 2030" One Hundred Year Study on Artificial Intelligence: Report of the 2015-2016 Study Panel, Stanford University, Stanford, CA,  September 2016. Doc: Accessed:  September 6, 2016.

    Executive Summary. Artificial Intelligence (AI) is a science and a set of computational technologies that are inspired by—but typically operate quite differently from—the ways people use their nervous systems and bodies to sense, learn, reason, and take action. While the rate of progress in AI has been patchy and unpredictable, there have been significant advances since the field's inception sixty years ago. Once a mostly academic area of study, twenty-first century AI enables a constellation of mainstream technologies that are having a substantial impact on everyday lives. Computer vision and AI planning, for example, drive the video games that are now a bigger entertainment industry than Hollywood. Deep learning, a form of machine learning based on layered representations of variables referred to as neural networks, has made speech-understanding practical on our phones and in our kitchens, and its algorithms can be applied widely to an array of applications that rely on pattern recognition. Natural Language Processing (NLP) and knowledge representation and reasoning have enabled a machine to beat the Jeopardy champion and are bringing new power to Web searches.

    While impressive, these technologies are highly tailored to particular tasks. Each application typically requires years of specialized research and careful, unique construction. In similarly targeted applications, substantial increases in the future uses of AI technologies, including more self-driving cars, healthcare diagnostics and targeted treatments, and physical assistance for elder care can be expected. AI and robotics will also be applied across the globe in industries struggling to attract younger workers, such as agriculture, food processing, fulfillment centers, and factories. They will facilitate delivery of online purchases through flying drones, self-driving trucks, or robots that can get up the stairs to the front door.

    This report is the first in a series to be issued at regular intervals as a part of the One Hundred Year Study on Artificial Intelligence (AI100). Starting from a charge given by the AI100 Standing Committee to consider the likely influences of AI in a typical North American city by the year 2030, the 2015 Study Panel, comprising experts in AI and other relevant areas focused their attention on eight domains they considered most salient: transportation; service robots; healthcare; education; low-resource communities; public safety and security; employment and workplace; and entertainment. In each of these domains, the report both reflects on progress in the past fifteen years and anticipates developments in the coming fifteen years. Though drawing from a common source of research, each domain reflects different AI influences and challenges, such as the difficulty of creating safe and reliable hardware (transportation and service robots), the difficulty of smoothly interacting with human experts (healthcare and education), the challenge of gaining public trust (low-resource communities and public safety and security), the challenge of overcoming fears of marginalizing humans (employment and workplace), and the social and societal risk of diminishing interpersonal interactions (entertainment). The report begins with a reflection on what constitutes Artificial Intelligence, and concludes with recommendations concerning AI-related policy. These recommendations include accruing technical expertise about AI in government and devoting more resources—and removing impediments—to research on the fairness, security, privacy, and societal impacts of AI systems.

    Contrary to the more fantastic predictions for AI in the popular press, the Study Panel found no cause for concern that AI is an imminent threat to humankind. No machines with self-sustaining long-term goals and intent have been developed, nor are they likely to be developed in the near future. Instead, increasingly useful applications of AI, with potentially profound positive impacts on our society and economy are likely to emerge between now and 2030, the period this report considers. At the same time, many of these developments will spur disruptions in how human labor is augmented or replaced by AI, creating new challenges for the economy and society more broadly. Application design and policy decisions made in the near term are likely to have long-lasting influences on the nature and directions of such developments, making it important for AI researchers, developers, social scientists, and policymakers to balance the imperative to innovate with mechanisms to ensure that AI's economic and social benefits are broadly shared across society. If society approaches these technologies primarily with fear and suspicion, missteps that slow AI's development or drive it underground will result, impeding important work on ensuring the safety and reliability of AI technologies. On the other hand, if society approaches AI with a more open mind, the technologies emerging from the field could profoundly transform society for the better in the coming decades.

    Study Panel: 

    Peter Stone, Chair, University of Texas at Austin
    Rodney Brooks, Rethink Robotics
    Erik Brynjolfsson, Massachussets Institute of Technology
    Ryan Calo, University of Washington
    Oren Etzioni, Allen Institute for AI
    Greg Hager, Johns Hopkins University
    Julia Hirschberg, Columbia University
    Shivaram Kalyanakrishnan, Indian Institute of Technology Bombay
    Ece Kamar, Microsoft Research
    Sarit Kraus, Bar Ilan University
    Kevin Leyton-Brown, University of British Columbia
    David Parkes, Harvard University
    William Press, University of Texas at Austin
    AnnaLee (Anno) Saxenian, University of California, Berkeley
    Julie Shah, Massachussets Institute of Technology
    Milind Tambe, University of Southern California
    Astro Teller, X






    Publicado el 18.12.2014 por Pablo Hermoso de Mendoza González

    Texto escrito por: Rafael Berlanga, Oscar Romero, Alkis Simitsis, Victoria Nebot, Torben Bach Pedersen,Alberto Abelló. María José Aramburu.

    Los autores hacen un análisis de cómo las tecnologías asociadas a la Web Semántica están impactando en el ámbito de la inteligencia de negocio, en los productos denominados Business Intelligence.

    Resumen su artículo de esta forma:

    His chapter describes the convergence of two of the most influential technologies in the last decade, namely business intelligence (BI) and the Semantic Web (SW). Business intelligence is used by almost any enterprise to derive important business-critical knowledge from both internal and (increasingly) external data. When using external data, most often found on the Web, the most important issue is knowing the precise semantics of the data. Without this, the results cannot be trusted. Here, Semantic Web technologies come to the rescue, as they allow semantics ranging from very simple to very complex to be specified for any web-available resource. SW technologies do not only support capturing the “passive” semantics, but also support active inference and reasoning on the data. The chapter first presents a motivating running example, followed by an introduction to the relevant SW foundation concepts. The chapter then goes on to survey the use of SW technologies for data integration, including semantic




    Página Web


    Publicado el 28.2.2012 por Equipo GNOSS

    Extended Semantic Web Conference 2012 (ESWC 2012)

    La conferencia The Extended Semantic Web Conference 2012 (ESWC 2012) tendrá lugar en  Heraklion, Creta (Grecia)  entre el 27 y el 31 de Mayo del 2012. Se trata de una conferencia clave para discutir los últimos resultados científicos y las innovaciones tecnológicas en torno a las tecnologías semánticas.

    Entre los temas de interés de la conferencia podemos incluir:

    • Artificial Intelligence
    • Natural Language Processing
    • Database and Information Systems
    • Information Retrieval, Machine Learning Multimedia
    • Distributed Systems
    • Social Networks
    • Web Engineering
    • Web Science