Next Web: web 3.0, web semántica y el futuro de internet > artificial intelligence

    sortFiltrar Ordenar
    23 resultados

    Página Web

    /

    Publicado el 2.1.2019 por Equipo GNOSS

    Inteligencia Artificial: distinguiendo la moda de la realidad - Datanami

    Se trata de un interesante artículo de Alex Woodie, Editor in Chief de Datanami, en el que se pone en cuestión los límites y naturaleza de la actual moda (hype) de la Inteligencia Artificial.

    Por una parte, tenemos increibles avances en machine learning, gracias a las redes neuronales que usan GPUs (Graphics Processing Unit) muy rápidas y que están entrenadas con grandes cantidades de datos. Esta forma de IA ha impulsado enormemente los sistemas de visión artificial y de reconocimiento del habla, a menudo por encima de la capacidad de los humanos.

    Por otra, estamos lejos de comenzar a ver los tipos de automatización que muchos esperan de la IA. A pesar de que se empujan las fronteras de lo que es posible hacer con estas máquinas y algoritmos, ya hemos llegado a algunos límites de lo que estas tecnologías pueden conseguir.

    Los vehículos autónomos son una prueba evidente. A pesar de los enormes progresos, hay casos, como el padecido por la empresa DarwinAI, que exponen los problemas de estos sistemas en el mundo real al salirse de los casos previstos. El sistema de DarwinAI decidía desviarse a la izquierda sin razón aparente, hasta que descubrieron que se debía a una mala interpretación del color del cielo.

    Otro ejemplo curioso es el experimento llevado a cabo por investigadores de Carnegie Mellon, que fueron capaces de confundir tanto a un sistema de reconocimiento facial como para que identificara a uno de ellos como la actriz Milla Jovovich, a pesar de ser claramente un hombre (el estudiante de doctorado Mahmood Sharif), por el simple método de usar una montura de gafas diseñada para provocar el error.

    Esto, que podría parecer una anécdota, expone unos problemas de seguridad preocupantes, además de diluir los límites en lo que podríamos llegar a percibir como real o irreal.

    Es decir, las aplicaciones de IA actuales basadas en machine learning funcionan muy bien o excepcionalmente bien en ámbitos muy "estrechos", pero bastante peor cuando intentan pasar de un ámbito a otro o simplemente ejecutarse en el poco previsible mundo real. Eso sí, hay un consenso en que aún no hemos llegado a la cúspide de lo que se podría conseguir con las tecnologías actuales de IA, que el autor llama "estadística con esteroides" y otros han denominado como "estadística glorificada" (John Alexis Guerra).

    Hace unos 70 años que la inteligencia artificial forma parte del imaginario tecnológico colectivo. Desde entonces, ha tenido periodos innovadores prometedores con otros en los que las innovaciones parecían estancarse. Algunos investigadores de IA han llamado a estos periodos veranos e inviernos de la inteligencia artificial. Parecemos estar en un verano muy soleado, ¿cuándo dejará el calor actual paso a la realidad?

    ...

    Página Web

    /

    Publicado el 2.1.2019 por Equipo GNOSS

    La siguiente Inteligencia Artificial - DARPA - AI Next Campaign

    Durante más de 5 décadas, DARPA (Defense Advanced Research Projects Agency) ha liderado la investigación y desarrollo que ha posibilitado el avance y aplicación de tecnologías de Inteligencia Artificial basadas en reglas y aprendizaje estadístico. Propone ahora el desarrollo y aplicación de una "tercera ola" de tecnologías de inteligencia artificial, con el programa "AI Next", en el que invertirá 2.000 millones de dólares.

    Las áreas claves del programa serán la automatización de procesos de negocio críticos del Departamento de Defensa de los Estados Unidos de América; mejora de la robustez y fiabilidad de los sistemas de IA; mejoras en la seguridad y resistencia de las tecnologías de machine learning; reducción del consumo energético y de las ineficiencias de rendimiento; y ser pioneros en la siguiente generación de algoritmos y aplicaciones de inteligencia artificial, como la "explicabilidad" y el razonamiento de sentido común.

    Las áreas específicas de la campaña AI Next son: 

    • Nuevas capacidades. Automatizar procesos críticos de negocio, como la acreditación de nuevos sistemas de software.
    • IA Robusta. Analizar los fallos de las tecnologías de IA, actualmente poco comprendidos, para obtener un rendimiento fiable.
    • IA Adversarial. Mejorar la robustez de los sistemas. Si bien es la herramienta más potente de la IA actual, machine learning se ha demostrado como fácilmente engañable con pequeños cambios en los inputs que nunca confundirían a un humano (ver Inteligencia Artificial: distinguiendo la moda de la realidad). Los datos usados para entrenar al sistema podrían ser incorrectos y hacer que el sistema fuese vulnerable a un ciberataque.
    • IA de alto rendimiento. Mejorar el rendimiento conteniendo y/o reduciendo el gasto energético, mediante el rediseño de algoritmos y hardware.
    • IA de siguiente generación. Añadir a los sistemas la capacidad de explicar sus resultados y dotarlos de razonamiento con conocimiento de sentido común.

     

    ...

    Página Web

    /

    Publicado el 29.11.2018 por Equipo GNOSS

    ¿Es más complicado que las máquinas entiendan el español que otros idiomas?

    En este artículo de Xataka se recogen opiniones de expertos en procesamiento de lenguaje natural, en las que exponen las dificultades de los sistemas para reconocer contextos y procesar ambigüedades, localismos o ironías.

    Según el artículo, esto es más complicado en español que en inglés y mucho más en lenguas con una morfología más compleja, como por ejemplo el euskera, el alemán o el finés con sus mecanismos de palabras compuestas.

    ...

    Página Web

    /

    Publicado el 29.11.2018 por Equipo GNOSS

    Artificial Unintelligence, o cómo los ordenadores entienden mal el mundo

    El libro Artificial Unintelligence, de Meredith Broussard, consigue, desde su propio título, poner en cuestión los límites de las actuales iniciativas de Inteligencia Artificial y explica por qué no debemos asumir que los ordenadores siempre tienen razón.

    Meredith Broussard argumenta que el entusiasmo colectivo para aplicar las tecnologías informáticas a todos los aspectos de la vida ha dado como resultado una enorme cantidad de sistemas pobremente diseñados. Según esta tesis, estamos tan ansiosos por hacer todo digitalmente (desde pedir comida a encontrar pareja) que hemos dejado de pedir que la tecnología funcione realmente y debemos recordar que hay límites fundamentales en lo que podemos (y debemos) hacer con la tecnología.

    La autora acusa al tecno-chauvinismo (la creencia de que la tecnología es siempre la solución) e indica que es simplemente falso que los problemas sociales vayan a desaparecer gracias a una utopía tecnológica. Para demostrarlo, nos invita a acompañarle en un preocupante viaje en un coche autónomo, a analizar con inteligencia artificial por qué los estudiantes no puede superar tests estandarizados o a intentar arreglar el sistema de financiación de las campañas electorales de EEUU construyendo un software de inteligencia artificial.

    ...

    Página Web

    /

    Publicado el 7.8.2018 por Ricardo Alonso Maturana

    Why Knowledge Graphs Are Foundational to Artificial Intelligence (by Jim Webber)

    AI is poised to drive the next wave of technological disruption across industries. Like previous technology revolutions in Web and mobile, however, there will be huge dividends for those organizations who can harness this technology for competitive advantage.

    I spend a lot of time working with customers, many of whom are investing significant time and effort  in building AI applications for this very reason. From the outside, these applications couldn’t be more diverse – fraud detection, retail recommendation engines, knowledge sharing – but I see a sweeping opportunity across the board: context.

    Without context (who the user is, what they are searching for, what similar users have searched for in the past, and how all these connections play together) these AI applications may never reach their full potential. Context is data, and as a data geek, that is profoundly exciting.

    We’re now looking at things, not strings

    ...

    ...

    Página Web

    /

    Publicado el 1.8.2018 por Equipo GNOSS

    La construcción del Grafo de Conocimiento en Linkedin

    El director de Inteligencia Artificial de Linkedin explica en este artículo como Linkedin está construyendo su Grafo de Conocimiento.

    LinkedIn knowledge Graph es una gran base de conocimiento construida sobre "entidades" en LinkedIn, como miembros, trabajos, títulos, habilidades, compañías, ubicaciones geográficas, escuelas, etc. Estas entidades y las relaciones entre ellas forman la ontología del mundo profesional y son utilizados por LinkedIn para mejorar sus sistemas de recomendación, búsqueda, monetización y productos de consumo, negocios y análisis del consumidor.

    En este artículo el autor explica como aplican técnicas de Machine Learning para resolver los desafíos al crear el grafo de conocimiento, que es esencialmente un proceso de estandarización de datos sobre contenido generado por el usuario y fuentes de datos externas, en el que el aprendizaje automático se aplica:

    • la construcción taxonómica de entidades
    • la inferencia de relaciones entre entidades,
    • la representación de datos para consumidores de datos descendentes
    • la penetración de conocimiento (información) a partir del grafo 
    • la adquisición activa de datos de los usuarios para validar nuestra inferencia y recopilar datos de capacitación.

    El grafo de conocimiento de LinkedIn es un grafo dinámico. Las nuevas entidades se agregan al grafo y las nuevas relaciones se forman continuamente. Las relaciones existentes también pueden cambiar. Por ejemplo, el mapeo de un miembro a su título actual cambia cuando tiene un nuevo trabajo. Por tanto, hay que actualizar el grafo de conocimiento de LinkedIn en tiempo real cuando se produzcan cambios en el perfil de los miembros y nuevas entidades emergentes.

    ...

    Página Web

    /

    Publicado el 18.4.2018 por Equipo GNOSS

    eXplainable Artificial Intelligence (XAI) / FAT ML (Fairness, Accountability, and Transparency in Machine Learning)

    Explainable AI (XAI) or Transparent AI es una inteligencia artificial (IA) cuyas acciones pueden ser fácilmente comprendidas por humanos, en contrase con las IAs tipo "caja negra" que emplean algoritmos complejos y opacos, en las que ni siquiera sus diseñadores pueden explicar porque la IA ha llegado a una decisión concreta.

    XAI es uno de los elementos del modelo FAT ML (Fairness, Accountability and Transparency in Machine Learning) y pueden usarse para desarrollar el derecho social a la explicación.

    En cualquier caso, esta transparencia no suele ser gratis. A menudo hay inconvenientes en cuanto a lo inteligente y transparente que puede ser una IA, y es posible que estos inconvenientes aumenten con el aumento de la complejidad interna de los sistemas. El desafío tecnológico de explicar las decisiones de una IA se conoce como "problema de interpretabilidad".

    ...

    Vídeo

    /

    Publicado el 7.1.2018 por Equipo GNOSS

    The Thinking Machine (Artificial Intelligence in the 1960s)

    Can machines really think? Here is a series of interviews to some of the AI pioneers, Jerome Wiesner, Oliver Selfridge, and Claude Shannon. A view at the future of computer intelligence from back then...

    Extracto de un documental de 1961 que enfatiza la antigua premisa de la investigación de inteligencia artificial: si pudieras programar una computadora para imitar tareas cognitivas de orden superior como las propias de matemáticas o el ajedrez, estarías en un camino que eventualmente llevaría a algo similar a la conciencia.

     

    ...

    Página Web

    /

    Publicado el 28.9.2014 por Equipo GNOSS

    Proyecto BabyX. Laboratory for Animate Technologies. Auckland Bioengineering Institute. The University of Auckland. New Zealand.

    El proyecto BabyX es uno de los proyectos de inteligencia artificial que ha despertado más interés en los últimos tiempos. Se trata de una iniciativa de investigación del Laboratory for Animate Technologies, del Auckland Bioengineering Institute (University of Auckland, New Zealand).

    BabyX es un prototipo animado virtual de un bebé. Se trata de una simulación psicobiológica generada por ordenador, y es un vehículo para experimentar modelos de computación de sistemas neuronales básicos, implicados en el comportamiento interactivo y el aprendizaje.

    ...

    Página Web

    /

    Publicado el 8.8.2014 por Equipo GNOSS

    Big Structure: At The Nexus of Knowledge Bases, the Semantic Web and Artificial Intelligence

    En este post Mike Bergman,  CEO of Structured Dynamics LLC nos habla de la evolución de las bases de datos en los últimos años. En especial señala como ha influido la web semántica en su evolución.

    ...